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Flux prediction

‣ Secondary π production 
based exclusively on 
external data - no in situ 
tuning
- both π- and π+

‣ These dedicated data 
allow for absolute MB σ 
measurements
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HARP collaboration, 
Eur. Phys. J. C 52 29 (2007) 

π- production
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Detector

‣ Primarily a Cherenkov 
detector, best at reconstructing 
leptons.

‣ However we’ve shown late 
light can be used to 
reconstruct protons well (NCE 
measurement - more later).

5

Nucl. Instr. Meth. A599, 28 (2009)  
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‣ Use Llewelyn-Smith expressions for elastic scattering on free nuclei

‣ Relativistic Fermi Gas (RFG) model: bound nucleon targets treated as 
independent particles subject to binding energy and global Fermi 
momentum
- FF values set by (e,e’) scattering data
- introduce empirical Pauli blocking scale κ

‣ Single π production: Rein-Sehgal model

NUANCE
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 Nucl. Phys. B43, 605 (1972)

Phys. Rep. 3, 261 (1972)

Ann. Phys. 133, 79 (1981)
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Pre-MiniBooNE σ’s

7

‣ Sparse measurements around 
MiniBooNE energies

‣ Need as much input as possible 
for successful oscillation 
program 

‣ No sub-GeV anti-neutrino σ’s
‣ vital for future CPV 

measurements

‣ First CC + NCE sub-GeV anti-
neutrino measurements today!
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ν-mode rate

‣ MiniBooNE has 
published ~90% of the 
total ν-mode rate, 

‣ Lots of interest: more 
than 500 citations from 
these papers
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QE 

NC EL 

CC π+ 

multi-π + 
CC π 0 NC π +/- NC π 0 other WS 

PRD 81, 092005 (2010) 
PRL 100, 032301 (2008) 

PRD 82, 092005 (2010) 

PRL 103, 
081801 (2009) 
PRD 83, 
052007 (2011) 

PRD 83, 052009 (2011) 
PRD 81, 013005 (2010) 

PL B664, 41 
(2008) 

‣ As you heard, we’re 
still extracting info. 
from ν-mode data  
(M. Tzanov’s talk)
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ν-mode rate

‣ To complete MiniBooNE σ 
program, must fully exploit 
unprecedented anti-ν 
statistics
- 1.0 x 1021 POT in a mostly-

unexplored energy region

‣ Before able to make 
precision anti-νμ σ’s, must 
deal with largest 
background: wrong-sign νμ
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QE 

NC EL CC π- 

multi-π+ 

CC π0 

NC π+/- 

NC π0 

other 

WS ν 

PRD 81, 
013005 (2010) 

PRD 84, 072005 (2011)
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Wrong-sign background

‣ νμ parent π+ production in anti-ν 
mode (“wrong signs”) mostly not 
covered by HARP (right)
- overall rate highly uncertain!

‣ Moreover, accepted π angle a mild 
function of energy 
- need to check flux spectrum! 
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Wrong-sign measurements

‣ Other detectors employ magnetic field to separate νμ / anti-νμ
- MiniBooNE unmagnetized, must use statistical techniques

‣ General strategy: isolate samples sensitive to νμ beam content, apply 
measured σ’s from neutrino-mode data (CCQE, CCπ+) 

‣ Level of data-simulation agreement then reflects accuracy of (highly-
uncertain) νμ flux prediction
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Three νμ flux measurements

‣ Three samples isolated and analyzed:

1.  CCπ+ sample 

2.  Scale samples consisting of μ-only and μ+e for νμ, anti-νμ content

3.  Backward scattering region in CCQE sample

12

anti-ν CCQE expected to be much more forward-going

anti-ν induced π- absorbed in the medium (does not decay), so by requiring 1μ,  2 
decay electrons (one each from μ and π+ decay), get > 80% purity sample of νμ events

νμ CC events have 8% capture rate in mineral oil

Phys. Rev. D84: 072005 (2011) and AIP Conf. Proc. 1405, 83 (2011)
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anti-ν CCQE expected to be much more forward-going

Phys. Rev. D84: 072005 (2011) and AIP Conf. Proc. 1405, 83 (2011)

Method #3 model dependent!
Details of forward-going anti-ν assumption 
not well understood, results NOT USED 

to extract anti-ν cross sections
Once σ’s better known, could be a 

powerful technique

νμ CC events have 8% capture rate in mineral oil

anti-ν induced π- absorbed in the medium (does not decay), so by requiring 1μ,  2 
decay electrons (one each from μ and π+ decay), get > 80% purity sample of νμ events
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‣ Results binned in energy as finely as allowed by statistics
- nominal prediction ~20% high in normalization, simulated spectrum appears 

adequate

‣ predicted νμ flux in anti-ν mode constrained by < 15%

Wrong-sign flux results
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νμ Φ in anti-ν mode
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Last word on ν-mode flux

‣ Wrong signs constrained to a sub-dominant uncertainty in all anti-ν 
mode analyses

‣ Let’s move to anti-ν analyses, where we can exploit HARP data
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(Anti) neutrino-nucleon neutral current elastic 
(NCE) scattering

‣ Most fundamental neutral current probe of the nucleon

‣ Cleanly offers sensitivity to hadronic side of elastic 
interactions

‣ νμ NCE analysis

17

PRD 82, 092005 (2010)
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Nucleon reconstruction

‣ We measure sum of n+p NC interactions: identical isotropic 
scintillation signature for bulk of spectra

‣ Some separation above Cherenkov threshold (350 MeV)

18

‣ Dedicated fitter identifies 
kinematics via PMT hit charge 
and time-likelihood 
maximization 
- assumes outgoing N is proton
- position res. ~0.7 m  
- energy res. ~20%
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Event selection

1.  One subevent
‣ removes decaying particles (μ, π)

2.  In time with ν beam
3.  Low veto activity
‣ ensures containment, rejects incoming                                               

particles

4.  Signal PMT hits > 12
‣ reconstructible event

5.  Cut on time ln(Le/Lp) 
‣ rejects beam-unrelated e’s

6.  Reco. energy < 650 MeV
‣ rejects high E backgrounds

7.  5m fiducial volume

19

Exp’t def’n: 0 μ’s, 0 FS π’s, any # of nucleons
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NCE sample

‣ 61k events pass selection
- 33% efficiency

- 48% purity

20

Process Contribution

48%

All νμ 19%

“Dirt” 17%

NC π 14%

⌫̄µ + N ! ⌫̄µ + N

Constrained
by wrong-sign
 measurements

Dedicated background 
measurement

Irreducible bkg: 
NCπ with no final-state π
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Dirt background

‣ “Dirt”: events produced external to the detector, do not deposit 
energy in veto, lead to PMT activity

‣ Tend to pile up at:
- high radius 
- upstream half of detector
- low energy

‣ Form dirt-enriched samples based on                                         
these correlations

‣ Performed in ν-mode NCE                                              
measurement as well, need                                                              
to repeat for ν-mode beam

21
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Dirt background

‣ Many, many 
measurements:

- 10 energy bins in the 
beam direction (Z_corr) 
and radius (R_corr)

- fit the energy spectrum 
directly (E_corr)

- Results consistent with 
ν mode NCE dirt fits

- final uncertainty on dirt 
events less than 10%

22
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Irreducible background

‣ Irreducible: NCπ with no final-state π, e.g.:

‣ Rely on MC to predict this background
- 30 - 40% errors assigned

‣ Will also report what was                                                     
subtracted to allow                                                                 
model-independent comparisons
- following previous MiniBooNE                                                       

conventions

23
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‣ Main result is dσ/dQ2.  Can calculate Q2 based on nucleon energy 
assuming interaction with an independent, at-rest target

‣ Notice!  Reconstructed solely on hadronic activity, CCQE Q2 

reconstructed solely on leptonic activity

‣ Simple σ calculation from here:

Cross-section calculation

24
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Systematic uncertainties

‣ Most uncertainties on 
parameters, processes that affect 
the final measurement evaluated 
through “many universe” MC 
method:

‣ Difference of these alternate σ’s 
from central-value sets systematic 
uncertainty  
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Error source Normalization 
uncertainty (%)

anti-ν flux 6

Backgrounds 6

Detector 15

Unfolding 7

Total (includes 
correlations)
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Uncertainty dominated
by light propagation

model
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Results

‣ Adequate agreement with MC prediction tuned to νμ CCQE data
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preliminary

First time shown
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More model comparisons

‣ Not much shape sensitivity to model parameters

27

preliminary
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νμ CCQE

‣ Complementary to the NCE analysis with exclusive hadronic 
reconstruction, MiniBooNE CCQE is based exclusively on μ 
kinematics (no attempt to recover hadronic activity)

‣ νμ CCQE only involves protons: MiniBooNE medium CH2, so sample 
is mix of bound and free scattering 

29

�̄µ µ+!

e+ 

p 
Either bound 
(12C) or quasi-

free (H) 
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µ!
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typical event

e from μ decay
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‣ Similar to proton NCE fitter, μ kinematics identified by fitting PMT hit 
topology and timing

‣ μ’s leave distinctive Cherenkov ring,                                 
reconstruction performs well                                                       (  

‣ This motivates exploitation of our large                                            
statistics to map the σ as a function of μ                                  
kinematics: main result d2σ/dTμd(cosθμ)

νμ CCQE reconstruction

30

NIM A608, 206 (2009)

μ kinetic energy 
resolution (%)

0.1

0.2

0.3

0.4

0.0
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1.  Two subevents
- consistent with prompt μ + decay e

2.  In time with ν beam

3.  Tμ > 200 MeV
- removes beam-unrelated e’s

4.  2nd subevent vertex consistent                                          with 
decay of prompt particle
- based on observed μ kinematics

5.  μ/e separation PID
- single-pion bkgs look more e-like

6.  5m fiducial volume

7.  Low veto activity
- containment + nothing coming in

νμ CCQE selection

31

μ+

νμ

Identical selection to νμ CCQE analysis:
single μ, 0 π, any # nucleons
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νμ sample composition

‣ 70k events: 60% νμ CCQE 
purity
- 43% 12C events, 17% H2

‣ 30% efficiency

‣ Largest background:             
νμ CCQE
- measured!

‣ Next largest: CCπ- (next)

32



f
  Joe Grange NuInt 2012  Oct. 25 2012 

CCπ-

‣ Single-π bkg for νμ CCQE analysis:   
ID’d CCπ+ events using 2-Michel tag
- empirically constrained their rate + shape, 

apply to bkg prediction

‣ Not possible in anti-ν mode: single-
pion mechanism CC1π-, stopped π- 
absorbed in medium ~100%, 2nd 
Michel not produced

33
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CCπ-

‣ Apply the same constraint measured in CCπ+ sample to CCπ- events
- uncertain extrapolation!

‣ Can do better: use improved π-production model that agrees with 
MB CCπ+ data as cross-check 
- improvements include muon mass effects (absent in Rein-Sehgal)

34

J. Nowak, NuInt09Q2QE (GeV2)

CCπ+
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CCπ-

‣ Comparison to MiniBooNE predictions

‣ Level of agreement suggests 20% uncertainty is sufficient
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Cross-section calculation, uncertainties

‣ Calculation identical to νμ CCQE σ analysis

‣ Same procedure to eval. measurement uncertainties as NCE
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Uncertainty summary

‣ Leading uncertainties: 
- flux: roughly due in equal parts to 

HARP π- data, beam modeling 
- backgrounds, roughly split between 

wrong sign CCQE & CCπ- 
production

37

Error source Normalization 
uncertainty (%)

anti-ν flux 9

Backgrounds 9

Detector 5

Unfolding 2

Total (includes 
correlations)

14
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‣ Least model-dependent measurement possible with MiniBooNE data.  
Independent of CCQE interaction assumptions
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‣ νμ CCQE much more forward-going compared to νμ
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νμ CCQE νμ CCQE
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νμ CCQE σ’s on 12C only

‣ To facilitate comparisons with theoretical calculations, CCQE on 
hydrogen subtracted to form 12C-only σ (using L-S MA = 1.02 ± 0.02 GeV)
- introduces model dependence,  also larger errors due to lower sample purity

40
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νμ CCQE σ’s on 12C only

‣ To facilitate comparisons with theoretical calculations, CCQE on 
hydrogen subtracted to form 12C-only σ (using L-S MA = 1.02 ± 0.02 GeV)
- introduces model dependence,  also larger errors due to lower sample purity
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‣ Further model comparisons: assuming underlying interaction is with 
independent, at-rest nucleon, can recover incident anti-ν energy, 
unfold to generated energy 
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νμ CCQE σ’s on 12C only
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independent, at-rest nucleon, can recover incident anti-ν energy, 
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1.    MiniBooNE and ν-mode beam
- wrong-sign background

2.    Neutral-current elastic measurement
- reconstruction + selection
- cross-section calculation 

- results

3.    Charged-current quasi-elastic measurement
- reconstruction + selection 
- cross-section calculation

- results

4.    Combined measurements 
5.    Summary
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μ+

νμ

‣ Robust MiniBooNE measurements:

‣ Can exploit correlated systematics:  
- detector errors: anti-νμ / νμ, same channel
- flux errors: NCE/CCQE in same beam

BooNE of data!

45

νμ CCQE
PRD 81, 092005 (2010)

νμ CCQE
This work

νμ NCE νμ NCE
PRD 82, 092005 (2010) This work

⎬ will show combined 
measurements of both types
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‣ Carefully evaluated correlated uncertainties implemented 
- biggest gain in light propagation model

NCE ratio: νμ / νμ

46

preliminary
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‣ Correlations not yet evaluated
- ratio measurement will only get better
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‣ (Inverted) comparison to earlier prediction

CCQE: νμ / νμ
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‣ Difference as a function of Q2QE

- again, correlations not yet taken into account

CCQE: νμ - νμ
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anti-νμ data:
hyd subtracted



f
  Joe Grange NuInt 2012  Oct. 25 2012 

‣ Recall exp’t definitions of Q2QE very different here: hadronic vs. 
leptonic observations
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NCE/CCQE ratio for νμ, νμ
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preliminary

νμ ratio:
PRD 82, 

092005 (2010)

Q2
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⌫ (pµ cos ✓µ �mµ) + m2
µQ2

QE,NCE = 2mN
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‣ Another on-the-fly comparison

NCE/CCQE ratio for νμ, νμ
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preliminary

N. Jachowicz talk
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1.    MiniBooNE and ν-mode beam
- wrong-sign background

2.    Neutral-current elastic measurement
- reconstruction + selection
- cross-section calculation 

- results

3.    Charged-current quasi-elastic measurement
- reconstruction + selection 
- cross-section calculation

- results

4.    Combined measurements 
5.    Summary

52
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Summary

‣ MiniBooNE has analyzed > 90% of neutrino mode data, and today’s 
analysis brings the total in anti-neutrino mode to > 80%

‣ New anti-neutrino CCQE data favor high normalization and harder 
momentum transfer spectrum compared to expectation associated 
with MA = 1.0 GeV.  NCE data favors higher normalization.

‣ Papers from both analyses forthcoming

53
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Thanks for your attention!
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Backup

55



f
  Joe Grange NuInt 2012  Oct. 25 2012 

Comparison to NOMAD data
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‣ Under same assumptions on underlying interaction, can calculate 
“Q2QE”

‣ Again, data prefers higher normalization, harder spectrum compared 
to expectations with MA = 1.0 GeV 
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Shape comparison
preliminary

Absolute comparison
preliminary

νμ CCQE σ’s on 12C only

shape error total error
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μ- capture wrong-sign measurement

‣ Due to μ- nuclear capture (~8% in min. oil), fewer ν- induced CC events lead 
to a decay electron. By adjusting the ν and anti-ν predictions, find a ν flux 
factor αν and anti-ν rate scale αν 
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µ only

data

=

�
↵⌫ ⌫µ only

+ ↵⌫̄ ⌫̄µ only

�
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µ + edata =
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Booster Neutrino Beam

8.9 GeV/c momentum protons 
extracted from Booster incident on 

beryllium target

59

Booster!

target and horn! detector!dirt !absorber!

primary beam! tertiary beam!secondary beam!
(protons)! (mesons)! (neutrinos)!

decay region!FNAL Booster!

Booster! Target!
Hall!
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Booster!

target and horn! detector!dirt !absorber!

primary beam! tertiary beam!secondary beam!
(protons)! (mesons)! (neutrinos)!

νµ  !

decay region!FNAL Booster!

π� 

π� π+ 

π+ 

Booster Neutrino Beam

Magnetic horn with reversible 
polarity focuses either 

neutrino or anti-neutrino 
parent mesons

(“neutrino” vs “anti-neutrino” mode)
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NCE dirt background

61

Example of radius fits in E bins
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CH2 comparison to RFG

‣ Data shape favors high effective axial 
mass
- data ~10% high of MA = 1.35 GeV

‣ Total uncertainty shown here
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‣ Small value of κ (1.007) does appreciably affect low Q2QE
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What does κ do?
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νμ sample composition
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Total σ: CH2
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Single-differential dσ/dQ2QE: CH2
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ν-mode rate

‣ Robust measurements of 
wrong-signs allow for anti-ν 
CCQE, NCE measurements

‣ Measurements shown today 
(νμ, CCQE, NCE) bring the 
measured rate for anti-ν 
mode to 83%
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Scattering formalism

‣ Use Llewelyn-Smith expressions for elastic scattering on free nuclei

‣ Bound nucleon targets treated as independent particles subject to 
binding energy and global Fermi momentum
- values set by (e,e’) scattering data

‣ Empirical Pauli blocking scale κ
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 Nucl. Phys. B43, 605 (1972)

“Relativistic Fermi Gas (RFG)”

Phys. Rep. 3, 261 (1972)
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•  A, B, C functions of vector and axial form factors
•  Form factors determined by external data (electron scattering, β decay), this leaves 

neutrino experiments one free parameter: the axial mass MA

•  increased MA → normalization increase, harder Q2 spectrum
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More π models

69

Phys. Rev. D 76, 033005 (2007).


